
The String Representation of Musical Phrases in µO

Stéphane Rollandin
hepta@zogotounga.net

last modified : 14 November 2013

Abstract

While MusicalNotes objects can be composed into a
MusicalPhrase object by evaluating plain Smalltalk
code, it is convenient to have a compact string
representation for fast input of more or less complex
motives. We present here the main format for such a
representation, in effect an expressive domain-specific
language. It is extensible in the sense that its vocabulary
dynamically reflects specifically tagged selectors, so that
it can be enriched by implementing new methods in
MusicalPhrase, MusicalNote, RhythmicCell and
GenericEnvelope.

1. Creation of musical notes and phrases

The E musical note can be instanciated in muO by the
Smalltalk code 'e' knote. This already uses the string
representation we are describing in this paper. 'e' is the
string and the knote selector invoques a parser to read
this string as a "key note"1. Similarly, a musical phrase
such as the major chord can be instanciated by the code
'c e g' kphrase.

It would be cumbersome to create a new E note without
using the string parser. This would look like :

MusicalNote new midiPitch: 64
or

Mode major mediant
or

MusicalNote new pitch: 329.628

The major chord could be created by

Mode major I
or

MusicalNote new
 chordCollect: [:n : mp |

MusicalNote new midiPitch: mp]
 with: #(60 64 67)

which is not really readeable.

These examples illustrate that a note pitch has to come

1 The KeyKit format designed by Tim Thomson is a
subset of the langage implemented by the parser, so
knote can also be taken as "KeyKit note". See
http://nosuch.com/keykit/

from somewhere : it is either provided as a MIDI key
number, or crudely given as a frequency in Hz, or come
from the associated scale of a specific musical mode2.

In µO it is the responsibility of a mode to name pitches .

2. Note names and modes

The first job of the string parser is to read a pitch via a
note name. The way it does this is more sophisticated
than simply mapping a symbol to a frequency ; it
involves a musical mode, by default Mode major.

The main work here is performed by the readNote:
method of class Mode. For example,

Mode major readNote: 'e'
and

Mode major perfectFifths readNote: 'e'

do not return the same note. The #perfectFifths
selector set the mode scale to a 12-TET with an overall
interval a bit larger than one octave, so that it features a
just perfect fifth interval; since the default tuning of 440
Hz for A is unchanged, the pitch for E is 329.3617 where
it was 329.628 in the standard major mode.

Some modes provide a list of note names mapping their
underlying scale steps. This is a rather complex matter in
the case of diatonic modes of a chromatic scale in which
there is some support for enharmonic notation, French
solfège syllables, and Indian sargam notation. We will not
go into details about this here.

Whatever the mode however, even if it does not have a
naming scheme, it is always possible to refer to the notes
directly via their step numbers in the mode, offset by 1 so
that the tonic is at step 1. Thus, the major chord can also
be instanciated by

 '1 3 5' kphrase

which is equivalent to:

Mode major readPhrase: '1 3 5'

The minor chord can similarly be obtained by

2 In µO a mode is build upon a scale by selecting a
subset of its steps. For details see the paper "Modes
and Scales in µO"

1

'1 3- 5' kphrase

or by either

Mode major readPhrase: '1 3- 5'
or

Mode minor readPhrase: '1 3 5'

4. Absolute pitch representations

A MIDI pitch can be represented by a p followed by the
MIDI number, for example 'p60'.

A note pitch can also be expressed by its frequency in
Hertz, prepended by a h like in 'h440'.

5. Pitch modifiers for note names

A note name can be completed by one or more
accidentals and an octave number. The accidentals
symbols are + and – (or, equivalently, # and b) ; they
transpose the note respectively one scale step up and one
scale step down, so that 'e+' knote is equivalent to
'f' knote while 'c+' knote is 'd-' knote.
Accidentals can be mixed freely : 'c+-+' knote is a
C#.

Quarter-tone inflection is supported via symbols > and <
(respectively up and down) so that 'c>>' knote is the
same as 'c+' knote, while 'e>' knote is equivalent
to 'f<' knote.
It is legal to write something like 'a>-<++>' knote,
which is 'b->' knote.

The octave number, if present, is the first modifier to
appear. It can be a plain number, or be indicated with a o.
The octave number corresponding to the scale index 0 is,
by convention, always 3. When no octave number is
specified, 3 is assumed : 'c+o4' knote is one octave
above 'c+' knote, and can be spelled 'c+4'.

Last but not least, the note pitch can be offset by any
interval or just ratio, specified within parentheses. For
example 'c(m3)' knote is a minor third above C, that
is Eb. 'c(-m3)' knote is a minor third below C,
equivalent to 'ao2' knote. Just intervals are allowed,
for example in 'c(h7)' knote which is an harmonic
seventh above C. The list of supported interval names
(several hundreds accounting synonyms) can be accessed
by inspecting MusicTheory intervalsDictionary.
Intervals can also be specified directly as ratios :
'c(6/5)' knote.

An interval can appear by itself, like in '(m2)' knote.
In this case, the pitch reference is the mode tonic, C in the

example. Mode D minor readPhrase: '(U)' would
returns a D (U stands for unison).

At the end of the pitch specification, whatever format it
uses, one can append u or w:
u will ensure that the note is higher than the previous note
in the phrase, transposing it up by as many octaves as
required3; similarly, w will ensure that the note is lower in
pitch than the previous note.

Here ends the overview of the different ways to describe
a note pitch.

A note without pitch, a rest, can be defined using r
instead of a pitch specification.

6. Note modifiers

The other note modifiers can appear in any order :

v and a volume
d and a note length
r and a note value
c and a channel
t and a starting time
D and a duration
A and an articulation factor

Volume is either an integer from 0 to 127, or a float from
0.0 to 1.0. Alternatively it can be a dynamics keyword
from :ppppp to :ffff4.

Note length, duration and starting time are either integers
expressing time in clicks (there is 192 clicks per second)
or floats expressing time in seconds ; note length is
always positive.

Channel must be a positive integer.

Note value is an integer, a code number detailed below
within the rhythmic canvas discussion.

The articulation factor is a positive number.

The default values are 0.5 for note length, 0.5 for volume
(:mp dynamics), 0 for starting time, 1 for channel.

'c' fully explicited would then be 'ct0d0.5v0.5c1'.

Note value is an alternative way to specify the note
length ; on the other hand duration is a completely

3 To be precise: what we call "octave" here is the
repeating interval of the reading mode underlying scale,
which is indeed an octave in the case of a common
diatonic mode. See the paper "Modes and Scales in µO"
for details.
4 See "Working with Dynamics in µO" for details.

2

different thing.

Any musical element in µO has a duration used as
reference for scaling, mixing and concatenation. Unless
explicitely set, the duration of a musical element is equal
to its end time. Giving a note a specific duration
dissociates the note duration from its end time, allowing
articulation control. A D modifier not followed by a
numeric specification will make the note duration be
equivalent to its end time again. In terms of articulation
this is a return to legato.

The articulation modifier A provides a handy way to set
both note length and duration in order to achieve a
specific articulation : A1 is a legato, A0.7 a staccato,
A1.8 a fermata5.

Volume, note length, duration, octave number and
starting time modifiers accept relative numeric
arguments : instead of an absolute number, an offset can
be provided, which must begins with a + or a -. For
example, 'cv+5' knote is equivalent to 'cv68'
knote, and 'cv-5' knote is 'cv58' knote. As a
special case, a relative argument for starting time must
always begins with a +, even if it is negative, since a
starting time can be negative. This way the parser can
differentiate between 'ct-2.0' , a C note starting at
time -2 seconds, and 'ct+-2.0', a C note starting two
seconds before the default time. The same applies to
octave number, 'co+-1' being a C note one octave
below the current octave while 'co-1' is a C at octave
-1.

Relative arguments are not really useful when describing
single notes, but they are in the context of a musical
phrase (see below).

More relative modifiers for volume and note length are
defined as single characters. They are :

& double note length
! halve note length
. scale note length by 3/2 (dot)
_ scale note length by 2/3 (triplet)
* scale note length by 3
? scale note length by 1/3
^ dynamics up (e.g. from :mf to :f)
" dynamics down (e.g. from :mf to :mp)

7. Notes in a musical phrase

Within a musical phrase string representation, the default
values for absent note modifiers are determined by the
previous note :

5 For a detailed discussion, see the paper "The Mixing
Algebra of Musical Elements in muO".

'cd0.2 e g' kphrase

is equivalent to

'cd0.2 ed0.2 gd0.2' kphrase

This applies to the pitch, so a major chord could also be
expressed as list of intervals :

'(U) (M3) (m3)' kphrase

Here is its just intonation version :

'(U) (5/4) (6/5)' kphrase

The interest of relative arguments now appears :

'c ed+0.1 gd+0.1' kphrase

is equivalent to

'c ed0.6 gd0.7' kphrase

Notes are separated by commas or white space ; the type
of separator determines the default starting time of the
following note : if it is a white space, the above rule
applies and it is the same as the previous note starting
time. If the separator is a comma or a semicolumn then
the default starting time is the duration of the previous
note which in most cases is its end time :

'c,e,g' kphrase

is an arpeggio, equivalent to

'c et0.5 gt1.0' kphrase

The note duration may not be its end time, for example
when using the articulation modifier A :

'cA0.8,e,g' kphrase

defines a staccato equivalent to

'cd0.4 et0.5 gt1.0 l1.5' kphrase

In the presence of a rhythmic canvas (see section 10
below), multiple commas can be used to skip beats,
otherwise they count as a single comma :

'c,,e , , g' kphrase

is the same as

'c,e,g' kphrase

For the sake of clarity carriage return, linefeed and
tabulation characters act as white space.

The semicolumn character ; acts as a comma. It can be

3

used to get the semantics of a comma in the presence of a
rhythmic canvas (again see chapter 10 below).

8. Phrase duration

By default the duration of a musical phrase is equal to its
length, that is the largest of its notes ending times. The
duration can be explicitly set by using an l (or a L)
followed by the duration.

A standalone l (or L) can alternatively appear anywhere
among the notes in which case the duration of the phrase
will be set to the default starting time at that position.

Note that 'c,e,g,l' kphrase is not exactly equivalent to
'c,e,g' kphrase : both do have the same duration (1.5
seconds) but the first one has an explicit duration while
the second one does not :

'c,e,g' kphrase solidDuration is nil
'c,e,g,l' kphrase solidDuration is 1.5

9. Chords and arpeggios

A single note is expanded into a chord or an arpeggio
with the : and :: modifiers. For example c:maj or
d::h7. Unless explicitely cancelled, the modifier applies
to the following notes :

c:maj, e, g

stands for

c:maj, e:maj, g:maj

To cancel simply use : (resp.::) without a chord name.

The list of implemented chords is available by inspecting
or printing MusicTheory knownChords. Many chords
have synomyms ; to see them inspect or print
MusicTheory knownChordsWithSynonyms. Any
chord name may be prepended with an underscore _ : this
indicate a negative chords, where intervals are stacked
downwards6.

A chord name may be completed by a bass note and a
voicing. Both are separated by a / .

The bass note, when present, should appear first. If the
note is present in the chord, the chord will be inverted
accordingly; if it is not it will be added in bass position.

The voicing is a code, a combination of :

6 From jazz musician Steve Coleman ; see its essay at
 http://m-base.com/symmetrical_movement.html

i invert chord
s skip (move an octave up)
d drop (move an octave down)
o double an octave up
b double an octave down
m omit
+ transpose whole chord an octave up
- transpose whole chord an octave down

each followed by one or more digits(s), the index(es) of a
note in the chord, bass included, 1 being the index for the
lowest note. Note that in the case of i (invert) and +/-
(transpose) which apply to the whole chord, the optional
following digit indicates how many times the operation
must be performed.

Inversion if present must always appear first. Notes
indexes are not effected by an inversion as they are
defined when the bass note is known, before applying the
voicing.

Examples :

'c:maj/A/o1' kphrase
is

'ao2 co3 e g a' kphrase

'c:maj/A/io1' kphrase
is

'c e g a ao4' kphrase

'c:7sus4/o1s2' kphrase
is

'c g b- co4 f' kphrase

10. Rhythmic canvas

At any position between notes in the string representation
of a musical phrase it is possible to insert a time
signature.

[...] defines a rhythmic canvas7 upon which the
following notes will be read: when not explicitely given a
time or length attribute, they are aligned in the canvas:
each comma , note separator moves the reading time to
the next beat in the rhythm. The semicolumn ; note
separators works as in the absence of a canvas, setting the
reading time to the duration of the previous note.

Within a rhythmic canvas, a note duration can be
specified as a note value using the r attribute: r0 for a
double whole note, r1 for a whole note, r2 for a half-
note, etc down to r128.

Dotted and triplet notes can be specified by appending a

7 For details about rhythmic cells and canvases, see
"The Representation of Rhythmic Structures in µO"

4

0 (resp. a 3) to a note value: r80 is a dotted eighth, r43 a
triplet quarter. Appending a 6 stands for a double triplet
note (with the very special case of r106 for a double
triplet whole note, r16 being a plain sixteenth).

A r alone, with no numeric argument, will strech the note
up to the next beat in the rhythm.

After a comma , special operators can be used to jump
to a specific following beat:

|| next downbeat
(in most cases the beginning of next measure)
|S next on beat that is not a downbeat
|s next on beat, possibly a downbeat
|w next off beat, possibly void
|W next off beat that is not void
|v or |V next void beat
|b the next beat, whatever it is

These operators have no effect if the current beat already
fits the specification.

The content of [...] may be:

- a key from the RhythmicCell library
 e.g. [4/4] or [3/8]

- a RhythmicCanvas signature,
 e.g. [(1 ((2 2) 4) 2 (3 8))]

- a RhythmicCell signature,
 e.g. [((2 2) 4)] or [(M ((2 2) 4) 2 (3 8))]

- a musical phrase, in which case it will be considered as
a rhythmic cell template.

- if a nested phrase has been stored in variable var, it can
be used via [@var] (see below for nested phrases).

- nothing, [], for going back to free rhythm.

11. Nested phrases

A {...} section can be used to define a part in a phrase as
a nested relative phrase.

What this means is that all the text within brackets is
parsed first as a full phrase, then inserted at the current
read time. The nested phrase is relative in the sense that
upon parsing it inherits the current notes modifiers and
the current rhythmic canvas (if any).

The nested phrase can be stored in a variable var by using
the syntax {...}@var

A subsequent relative phrase with syntax {@var} or

{/.../ @var} can then recall it.

The last nested phrase can always be recalled by a
plain{} or {/.../}.

In the context of a rhythmic canvas, the exact way a
relative phrase is inserted is controlled by one or more
optional symbols:

{...} (no symbol) parallel insertion within a rythmic
pattern: the nested phrase may get ahead the current beat.

{...}! overwriting insertion within a rythmic pattern:
the nested phrase claims as many beats as required to fit.

{...}# force alignment of the relative phrase to the
rhythmic pattern: the temporal structure of the nested
phrase is reconstructed so that if follows the current
rhythm.

{...}## force alignment in a similar manner as above,
but also take care that no rest happens between notes.

{...}1 force scaling of the relative phrase into the
current beat
{...}n force scaling into n (an integer) beats

Other symbols defines specific behaviors :

{...}% the relative phrase defines the new rythmic cell
{...}%n ... from its first n notes only
{...}%-n ... from its last n notes only

{...}> keep attributes: all notes attibutes (except time)
are passed back to the parent phrase.

{...}~style inserts the relative phrase as a single
inflected note, where style (optional) defines the pitch
envelope shape ; see section 13 below for more about
inflected notes.

Several symbols can be used; they must appear in the
following order : 1..9 @ ! # @ % > ~

12. Pluggable modifiers

What has been described so far could be considered as
the static part of the string format for musical phrases and
notes. Technically, it is mostly implemented in classes
MusicalPhrasePrinter and RelativeMusicalPhrase.

The dynamic (or pluggable) part of the format is a three-
fold system of routing allowing to modify either a whole
phrase, a single note or the current rhythmic cell by
directly sending it Smalltalk messages.

For example, 'c|cut| e g' kphrase is a major chord

5

where all notes have been sent the message cutAttack.

The implementation of method #cutAttack: in class
MusicalNote features the pragma

<muOPluggableAPI:
 #(Operation

category: 'expression'
keyword: 'cut')
parameters:

#((Number positive default: 0.1))>

Because of this pragma (a meta-statement not interpreted
as Smalltalk code) the parser knows that when it finds a
cut note modifier it has to send the message
cutAttack: with argument 0.1 to the note8.

The code 'c|cut0.2| e g' kphrase would use argument
0.2 instead of the default value.

As another example the phrase 'a,b,c' kphrase can
be reversed by writing '/rev/ a,b,c' kphrase.

Again this is because the #reverse method in class
MusicalCollection (parent of MusicalPhrase)
includes pragma

<muOPluggableAPI:
#(Operation category: 'basics'

keyword: 'rev')>

which binds the rev keyword to selector #reverse.

Several modifiers can be chained, separated by
semicolumns : '/r5;acc/ c,e,g' kphrase repeats
notes C,E,G five times then shape the notes onsets into a
accelerando.

A note about arguments: possibly optional, they are
always numeric. Floats and integers, positive or negative,
can be written as is. Fraction must be written in the form
n:m instead of n/m.

In summary, modifiers provide a way to inject Smalltalk
code into a phrase representation. Although this is limited
to specific tagged methods of at most one argument, it is
infinitely extensible: the composer familiar enough with
Smalltalk can very easily implement its own methods,
enriching the vocabulary of modifiers according to his
style.

12.1. Note modifiers

Single note modifiers must appear in a |...| section
immediately following the note specification.

8 This registration mechanism has other usages in µO.
Notably it allows extensible menus in interactive
editors.

The library of available modifiers is visible by inspecting
MusicalNote modifiers.

Like most other note modifiers, the |...| section is passed
implicitely from a note to the following one. The
propagation is stopped by any new section, including the
empty one ||.

A |...| section is allowed after a chord or arpeggio
definition. In that case the modifiers will apply to the
expanded note, a musical phrase. The corresponding
library is returned by MusicalPhrase modifiers.

For example,

'c:maj|strum|,a,b' kphrase

has the method strum sent to the three major chords.

To have only the first two chords strummed, we can write

 'c:maj|strum|,a,b||' kphrase

Modifiers specified with syntax |+...| are local for a
single note: they are not propagated; for example,

'c,e|+cut|,g' kphrase

only cuts the attack of note E.

If note modifiers are already defined, a new set of
modifier specified with |+...| is added to them for the
corresponding note; syntax |-...| is similar, with the
difference that the local modifiers are prepended to the
previously defined ones.

Finally, modifiers can be changed for all following notes
using forms|+=...|and|-=...|, which work as described
above with the only difference that their effect is not
local.

12.2. Phrase modifiers

Full phrase modifiers must appear in a /.../ section at the
beginning of the phrase representation.

Several sections can appear consecutively. In that case,
the sections are considered from right to left, the rationale
being that it makes it possible to further process a musical
phrase by simply appending a modifier section to its
string representation.

Phrase modifiers are a definite part of the string format ;
as such, they can appear within nested phrases :

'/r2/ a,b, {/r3/ c, d}' kphrase
is

6

'a,b,c,d,c,d,c,d,a,b,c,d,c,d,c,d' kphrase

The library of available modifiers is returned by the
expression MusicalPhrase modifiers.

When a modifier appears prepended with a ! it will
operate on each of the phrase notes instead of the phrase
itself; in that case it must be a valid note modifier (see
previous section).

A modifier, be it for phrase or for notes, can always be
prepended with a symbol defining a specific way for the
transformed phrase to be handled (by default it replaces
the original phrase).

These symbols are:

+ the transformed phrase is appended to the original
one.
& the transformed phrase is mixed to the original one.
* same as +, then the transformed phrase is being
transformed a second time and also being appended.
> the transformed phrase is appended to the original
one, then the resulting phrase is scaled to the original
duration.

12.3. Rhythmic cell modifiers

Rhythmic cell modifiers change the current cell ; they can
do so by either replacing it altogether or by first creating
a child cell, in which case it is later possible to switch
back to the parent cell.

The modifiers appear in a [;…] section. For example,

[3/8][;div;bpm160]

is a 6/8 time signature

A child cell is created with [:] while the return to the
parent cell is done via [.] ; to create a new child of the
current parent, use [.:].

In summary we have the forms :

[;...] modify current cell
 [:...] create a child cell, modify it

[....] back to parent cell, modify it
[.:...] create a child of parent, modify it

13. Inflected notes

An inflected note is a note whose pitch is not constant
over its duration. In the µO implementation such a pitch
is represented by an envelope.

The envelope can be either read from a library :

c~up

or it can be built by connecting plain notes in a phrase :

{c,g,e}~

13.1. Pitch envelope structure & behavior

Each breakpoint in a pitch envelope behave like a modal
note upon transposition: even for non eval-tempered
scales, the vertical intervals follow the scale intervals.

For an example, let's define two inflected notes built on a
phrase in a mode with a non equal-tempered scale :

IndianMode marwa readPhrase:
 '{{/stacc/ SA, PA!, GA&, RE.}~smooth}@inote,

{/mt2/ @inote}'.

The second note is transposed two mode steps up. From
the picture below we can see that its pitch inflexion shape
has been modified (at the third breakpoint) in order to
reflect the actual intervals it now covers ; it is kept in
tune:

13.2. Pitch envelope libraries

A single note can be inflected by appending ~shape ,
~shape*n or ~shape/n , where shape is a symbol
and n is a number.

Examples:

c~bump
c~up*3
c~dip/2.5

The symbol shape defines the shape of the inflexion. It
is registered in a library associated to the reading mode.
The user can modify or add to the library at will; this
topic will not be covered here.

Send #inflexionSymbols to a mode to get its set of

7

legal symbols for inflexion9.

The number n and operator * or / scale the inflexion in
the frequency domain: where c~up ends one semitone
higher, in C#, c~up*3 ends three semitones higher in Eb

13.3. Musical phrase as inflected note

An alternative way to define a pitch envelope is to
construct it from a musical phrase template. Each note in
the phrase gets transformed into a breakpoint; its
articulation defines how long after the breakpoint will the
envelope remains flat.

c,g,e

{c,g,e}~smooth

/stacc/ c,g,e

{/stacc/ c,g,e}~smooth

The format is {...}~style, where style is optional.

9 At the time of this writing, Mode major
inflexionSymbols returns #(#bump #cBump
#cDip #cDown #cUp #dip #down #earlyBump
#earlyDip #endBump #endDip #erfDown #erfUp
#example #expDown #expUp #fastDown #fastUp
#linDown #linUp #logDown #logUp #tDown
#tUp #up #vcDown #vcUp).

When present, style must be a method of class
GenericEnvelope.

Such relevant methods are: smooth, linear, slur,
circular ; more can be defined at will by implementing
the corresponding methods.

14. MIDI drums

A specific syntax allows the insertion of MIDI drums:

+(someDrum) is equivalent to pNNc10

where someDrum is a value in the MIDI drums
dictionary10 and NN the corresponding numeric key. For
example:

+(hiWoodBlock) is equivalent to p76c10

For convenience, it is allowed to omit arbitrary letters in
someDrum. If somDrm is a registered MIDI drum, it will
be interpreted as is; if it is not, then the first registered
drum matching the letters in somDrm will be considered.

For example,

+(iBlck) is equivalent to +(hiWoodBlock)
+(loFTom) is equivalent to +(lowFloorTom)
+(loTom) is ambigous: +(lowTom) or +(lowFloorTom)
+(lowTom) is not ambigous: it is a value in MIDI drums.

Channel, panning and volumes attributes can be used in
drum notes, but they will not be transmitted to upcoming
regular notes, only to other drum notes.

15. MIDI messages

For compatibility with KeyKit, arbitrary MIDI bytes can
be represented within a musical phrase by using x
followed by hexadecimal characters. For example, the
'xb07b00' would be a phrase consisting of a 3-byte
MIDI message - an all-notes-off for channel 1. The only
modifier allowed for MIDI byte messages is the time
modifier: 'xfe,xfet24' is a phrase containing two
single-byte messages, the second one occurring at click
number 24.

10 Here is the complete list: #(openCuica muteTriangle
openTriangle acousticBassDrum bassDrum1 sideStick
acousticSnare handClap electricSnare lowFloorTom
closedHiHat highFloorTom pedalHiHat lowTom openHiHat
lowMidTom hiMidTom crashCymbal1 highTom rideCymbal1
chineseCymbal rideBell tambourine splashCymbal
cowbell crashCymbal2 vibraslap rideCymbal2 hiBongo
lowBongo muteHiConga openHiConga lowConga
highTimbale lowTimbale highAgogo lowAgogo cabasa
maracas shortWhistle longWhistle shortGuiro
longGuiro claves hiWoodBlock lowWoodBlock muteCuica)

8

MIDI bytes can be combined with normal notes in the
same phrase, e.g. 'e,f,g,xc005,a,b' is a phrase that
contains a program change command in the middle of
several normal notes. Note that it is much more practical
to generate such phrases via proper MIDI objects:

ph := 'e,f,g' kphrase, ProgramChange electricPiano2,
'a,b' kphrase.

In the case of program changes a specific format is
implemented:

P[instrument]
 inserts at read time the program change for
instrument in channel 1.

P[n:instrument]
 inserts the program change for instrument in channel
n.

P[n:instrument1 p:instrument2 ...]
 inserts the program changes for instrument1 in
channel n, instrument2 in channel p, etc.

P[] inserts 16 messages setting grandPiano as the
instrument for all MIDI channels.

So the example above can be written:

'P[],e,f,g,P[1:electricPiano2],a,b' kphrase

All P[...] forms offset the reading time by 1 millisecond,
to ensure the program changes take effect before the next
note is played.

16. Mode changes

The mode for reading11 can be changed at any position
between notes by inserting M[mode], where mode is a
full or partial Mode specification.

A partial specification modifies the current mode; for
example:

M[minor] switch to C minor
M[G lydian]
M[G2 lydian] switch to G lydian at octave 2
M[perfectFifths] change temperament
M[withHandelFork] change tuning

A full specification defines another mode altogether; any
Smalltalk expression evaluating to a Mode instance is
valid:

M[IndianMode bilawal] an IndianMode
M[Mode major perfectFifths withHandelFork]
M[Mode ET: 31] 31-TET

11 See section 2 at the beginning of this document.

17. Examples

17.1. A modal exploration

Here is a real-world example of musical phrase defined
by a complex string representation. It looks obfuscated,
but one must keep in mind that is was elaborated
incrementally with real-time feedback in a interactive
notebook: actually it came very naturally.

M[E harmonicMinor]
[(M 1 (1 8) 1 (1 16) 1 (2 14))][;bpm130]
{/art0.4/
 {4|mf;ninth;ap;dim;dim|,
 1|+rev;fn3|,
 4|+ln3|,
 7|+rev;fn2|}##}

The compactness of the format is better appreciated when
one look at the equivalent Smalltalk code, albeit very
concise in itself:

mode := Mode E harmonicMinor.
rcanvas := (#(M 1 (1 8) 1 (1 16) 1 (2 14)) sig

bpm: 130) asCanvas.
phrase :=
 (mode subdominant mf ninth

arpeggiate diminuendo diminuendo),
 (mode tonic mf ninth arpeggiate diminuendo

diminuendo reverse firstNotes: 3),
 (mode subdominant mf ninth arpeggiate diminuendo
 diminuendo lastNotes: 3) at0,
 (mode subtonic mf ninth arpeggiate diminuendo
 diminuendo reverse firstNotes: 2).
phrase followCanvas: rcanvas.
phrase staccato: 0.4; removeSolidDuration.

Of course it is also possible to mix Smalltalk code and
string representation:

phrase := Mode E harmonicMinor readPhrase:
 '4|ninth;ap;dim;dim|,1|+rev|,4,7|+rev|'.

phrase followCanvas:
(#(M 1 (1 8) 1 (1 16) 1 (2 14)) sig

bpm: 130) asCanvas.
phrase staccato: 0.4; removeSolidDuration.

17.2. Nested phrases

Here we use three simultaneous nested phrases for a
complex chord structure (including dynamics variations),
followed by another nested phrase repeating two chords

9

three times:

a,f,{c"&&}{go2^,e,g^,e}{/nonleg/ e^&,g""},
{/r3/ f!":min,g}

17.3. hi & ho

This example demonstrates how nested phrases can be
bound to an symbol and recalled later.

{f!:min,g}@hi,{c!^:min2,a}@ho,
{/mf;r5;acc4;cresc/ @hi}, {/mf;r3;rit4;dim/ @ho}

17.4. Rhythmic variations

In this example we start with a plain 4/4 signature and
play with it via rhythmic cell modifiers:

[4/4] [:tup2:4;acc] e,g, [.:tup5:3] e,g,a,c,d,
 [.:tup6:4] e,c,d,g,a,g, [.:tup4:2;acc2] e,g,e,g,
 [.:tup4:1] e,d,c,d, [.:rit] e,a,g,e

17.5. Drumming

6/6 drumming with swing and dynamics:

/r5/ [3/6][;dsw0.45] +(loFTom)^ +(riCy1), +(riCy1)"
 +(eSnare), +(eSnare) +(riCy2), +(riCy1) +(crshCy2),
 +(loFTom)^, +(crshCy2)"

17.6. A vibrato

Pitch inflexion can be sculpted in very precise way; in
this example we define all details of a vibrato:

{/d1.0/ {/r5.5;stacc;rit1.5/ a,c}}~slur

The vibrato skeleton is the part within brackets:

/d1.0/ {/r5.5;stacc;rit1.5/ a,c}

Over the course of 1 second we repeat 5.5 times the
sequence A C with a slight ritardando. The staccato
articulation defines which proportion of the notes will
have a stable pitch in the eventual vibrato,

See for example with a much shorter staccato:

{/d1.0/ {/r5.5;dots;rit1.5/ a,c}}~slur

10

